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The temporal evolution of perturbations in stratified flow with inhomogeneous shear is examined analyti-
cally by an extension of the nonmodal approach to flows with inhomogeneous shear. The solutions of the
equations that govern the linear evolution and the weak nonlinear evolution of perturbations of the stream
function for stratified flow with monotonic inhomogeneous shear are obtained. It is shown that stabilization of
perturbations arises from nonmodal effects due to flow shear. Conditions at which these nonmodal effects may
be strong enough to stabilize the Rayleigh-Taylor instability are presented. These analytical results are also
compared to numerical simulations of the governing equations performed by Benilov, Naulin, and Rasmussen.
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I. INTRODUCTION

It is well known that inversely stratified fluids for which
density increases upward are unstable due to the Rayleigh-
Taylor instability for all wavelengthsf1g. The Rayleigh-
Taylor instability in a plasma is governed by similar equa-
tions for perturbations of electrostatic potential and density.
That instability develops in plasmas embedded in an unfa-
vorably curved magnetic field with a density gradient anti-
parallel to the magnetic field radius of curvature. In such
magnetically confined plasmas, examples of Rayleigh-Taylor
modes include the ideal and resistive balooning instabilities
f2g. A considerable amount of research has been devoted to
the study of the Rayleigh-Taylor instability in fluids and its
application to ionospheric turbulence. It is believed that the
Rayleigh-Taylor instability can play a major role in the onset
of equatorial spread Ff3,4g. In these physical systems, the
essential characteristics of the Rayleigh-Taylor instability are
similar. The instability arises in inhomogeneous mediasfluid
or plasmad and acts to interchange high- and low-density
regions or to interchange high- and low-temperature regions.

In many regions of interest, such as the atmosphere, the
ionosphere, or the edge of tokamak plasmas, ordinary fluids
or plasma may also contain inhomogeneously sheared flows,
i.e., flow fields with a spatially varying flow speed gradient.
It has been shown that homogeneous velocity shear can have
a dramatic effect on the Rayleigh-Taylor instability, e.g.,
Miles f5g and Kuof6g demonstrated that flow shear can sup-
press the Rayleigh-Taylor instability in unbound systems
with homogeneously sheared flows. Suppression of the
Rayleigh-Taylor instability in plasmas by shear flow was also
demonstrated in linear theory by Guzdaret al. f7g. Signifi-
cant stabilization occurs in the linear theory foruv08szdu
ù2−1/2g, wherev08szd is the velocity shear and the growth

rate of the instability in the absence of flow shear isg.
Historically, two different approaches have been used in

the development of linear stability theories for systems with
sheared flows. Both techniques employ a spectral expansion
in time. The first is the method of normal modes or the
“modal” approach. In a system with az-dependent flow ve-
locity v0szd directed along thex axis, the perturbations are
assumed to be harmonic in time with separable time and
space dependencies described bycsr ,td=cszdexps−ivt
+ ikxd, wherecszd defines the mode structure. The flow is
deemed unstable if at last one mode grows exponentially
with time. In the case of an ordinary sheared fluid, the mode
structure cszd is governed by a second-order differential
equation that possesses a singularity at a critical levelf9g
where the Doppler-shifted phase velocitysv /kd−v0szd van-
ishes. Because of the singularity, the equations governing the
modal structure are non-normal, i.e., the eigenfunctions as-
sociated with the governing differential equation are not mu-
tually orthogonal and experience strong interference. There-
fore, a stability analysis based on considering the only
eigenvalues,v, obtained from the modal approach may be
inappropriate for certain ranges of system parameters, and a
solution based on solving the initial value problem is pre-
ferred. Several authors have pursued solutions of the initial
value problem through the use of a Laplace transform in
time. The principal finding of the initial-value problem ap-
proach is that, in addition to the discrete eigenvalues linked
to the normal modes, there exists a continuous spectrum of
eigenvalues. Thus, the modal approach cannot provide a
complete solution for all sheared flow systems. It was dem-
onstratedssee, for example, Ref.f8gd that owing to the exis-
tence of the continuous spectrum of eigenvalues, initial dis-
turbances may decay or even grow as a nonmodal pertur-
bation with nonseparable space and time dependencies and
with time-dependent amplitudes that are power-law functions
of time. Such disturbances, at certain times, may overwhelm*Electronic address: vmikhailenko@kipt.kharkov.ua
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the exponentially growing modes of the discrete spectrum
f12g and always dominate over the exponentially decaying
modes. Therefore, for the conditions at which the Rayleigh-
Taylor instability is stabilized by sheared flow, nonmodal
effects should be considered. For those time intervals during
which the nonmodal solutions dominate, the nonmodal ef-
fects may even become strong enough to disrupt the devel-
opment of the typical nonlinear processes predicted by non-
linear theories of normal mode evolution, and therefore new
nonlinear processes due to the growth of the nonmodal solu-
tions should also be considered.

An alternative approach to the initial-value problem solu-
tion for unbounded, homogeneously sheared flow was de-
scribed by Hartmanf13g. That approach involves a transfor-
mation to coordinates in the local rest frame of the flow and
does not invoke the normal mode ansatz or any spectral ex-
pansion in time. This method, previously used by Lord
Kelvin f14g in studying the evolution of initial disturbances
in parallel viscous flows with uniform shear, and by Phillips
f15g in investigations of internal waves in a weakly sheared
thermocline, yielded a successful analysis of the evolution of
disturbances of the flows of fluids and plasmas with homo-
geneous shearssee, for example, Refs.f17,18g and references
thereind. In the flow frame coordinates, the evolution of an
initial perturbation in homogeneously sheared flow is solv-
able analytically for any time of interest and is free from
ambiguities arising from the mathematical singularity ap-
peared at a normal-mode critical level. Hartman’s analysis
obtains the same constraint,uv08szduù2−1/2g on the velocity
shearv08szd for stabilization and suppression of Rayleigh-
Taylor instability as was obtained with the modal approach.
However, Hartman found that the solution to the initial-value
problem has a typically nonmodal power-law temporal de-
pendence and thus the normal mode solution is not the
steady-state limit for the initial-value problem. Weak nonlin-
ear analysis of the Rayleigh-Taylor instability in a plasma,
performed by Mikhailenkoet al. f17g using a nonmodal ap-
proach, demonstrated that homogeneous flow shear stabilizes
not only linearly unstable two-dimensional perturbations of
electrostatic potential, but also nonlinearly unstablesterms
including the fourth order of the perturbed potential were
consideredd perturbations. Compared to the previous linear
analyses, the nonlinear analysis yielded a slightly different
constraint on the magnitude of the velocity shear required for
stabilization of the Rayleigh-Taylor instability.

Until now, the nonmodal approach has only been applied
to systems with homogeneous flow shear, i.e.,v08szd indepen-
dent ofz. In this work, we develop an analytic framework for
the extension of the nonmodal approach to flows with inho-
mogeneous shear and we also examine the stability of strati-
fied flows with inhomogeneous shear. We will consider at the
outset only two-dimensional perturbations in a stratified me-
dium. The application of a two-dimensional model is justi-
fied by the two-dimensional nature of the Rayleigh-Taylor
instability in fusionf2g and ionospherf7g plasma as well as
in internal gravity waves in ordinary stratified fluidsf10,11g.
The structure of this paper is as follows. In the next section,
we formulate the basic nonmodal nonlinear equation that can
be solved asymptotically in the case of inhomogeneous flow
shear. In Sec. III, the solutions of that equation for stratified

flows with inhomogeneous, monotonic, velocity shear are
developed. In Sec. IV, the weak nonlinear temporal evolution
of the nonmodal solutions is studied and some concluding
remarks are presented in Sec. V.

II. THE GOVERNING EQUATIONS

We choose as our model a two-dimensional unbounded
plane with inhomogeneously sheared flow and an ex-
ponential density scaling. The equilibrium velocity,
pressure, and density are given byv0=v0szdex, Pszd
=P0 expf−gezr0sz1ddz1g, andr0szd=r00 exps−z/Hd, whereg
is the acceleration due to gravity,r00 is the mean density, and
H is the scale height for the density. The fluid is assumed to
be incompressible and therefore a stream function,c=cey,
can be defined through

v = = c = S−
]c

]z
,
]c

]x
D .

The solution of the temporal evolution of inhomoge-
neously sheared flow reduces to the solution of the set of
differential equations forc and density perturbation,r,

S ]

]t
+ v0szd

]
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]x
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where the prime denotesd/dz. The linearized version of Eqs.
s1d and s2d may be combined through the Boussinesq ap-
proximation into the equation

S ]

]t
+ v0szd

]

]x
DFS ]

]t
+ v0szd

]

]x
DDc − v09szd

]c

]x
G = − N2]2c

]x2 ,

s3d

in which

N2 = −
gr08szd

r0

is the Brunt-Väisälä frequency. In the normal mode ap-
proach, in which a stream functionc is assumed to be har-
monic in t, i.e.,cszdexpsikx− ivtd, the equation for the mode
structurecszd is called the Taylor-Goldstein equation and has
the form

d2c

dz2 − Sk2 +
kv09szd

skv0szd − vd
−

k2N2

skv0szd − vd2Dc = 0 s4d

with singular points, where the phase velocity matches the
equilibrium velocity, v /k−v0szd=0. Such points are com-
monly referred to as critical levelsf9g. It follows from Eq.
s4d that estimation of the shear-flow effect is related to the
solution of the nonlinear eigenvalue problem with singular
nonorthogonal eigenfunctions in the modal approach.
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To avoid the mathematical difficulties involved in the nor-
mal mode approach, here we use the nonmodal method. Our
approach permits the development of asymptotic methods for
analysis of the linear as well as the weak nonlinear evolu-
tionary stages for systems in which the inhomogeneous flow
shearv08szd is either a small or a large parameter. The non-
modal approach begins with a transformation to the convec-
tive coordinates

j = x − v0szdt, h = z, t = t, s5d

that are the coordinates in the local rest frame of the mean
flow. These coordinates are generalizations of the convective
coordinates used previously in systems with homogeneously
sheared flowsf13–17g. In terms of the convective coordi-
nates, the system of equations may be combined into a single
nonlinear differential equation for the stream functionc

1

v08shdT
]

]t
F 1

v08shdT
]

]t
Dc −

v09shd
v08shd

]c

]j
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]2c
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= 2
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]Dc

]h
D

−
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fv08shdTgv08shd
S ]c

]h

]
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]c
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Dv09shd
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s«Td2

fv08shdTg2S ]c
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DS ]c
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−

]c
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DDc,

s6d

whereJshd=fN/v08shdg2 is the Richardson number. Equation
s6d contains two parameters. One,v08shdT, is the magnitude
of the flow shearsshear parameterd, and the second,«T, is an
amplitude parameter, which defines a measure of the nonlin-
earity. t is the dimensionless time variable, defined byt
=Tt, whereT is the time scale of interest. The Laplacian
operatorD in the new variables is time-dependent and is
equal to

D =
]2

]x2 +
]2

]z2 ,

=
]2

]j2 +
]2

]h2 − 2fv08shdTgt
]2

]j]h
−

v09shd
v08shd

fv08shdTgt
]

]j

+ fv08shdTg2t2 ]2

]j2 . s7d

In the new differential equation, the shear parameter,
v08shdT, can be considered to be a small or large asymptotic
parameter to determine the qualitative behavior of the solu-
tions and to develop appropriate asymptotic methods for so-
lution in the cases of weak or strong flow shear. Performing
a Fourier transformations of Eq.s6d over variablej,

cst,l,hd =E dj exps− ijldcst,j,hd, s8d

the equation forcst , l ,hd is obtained from Eq.s6d and is

1
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]
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−
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Sv0-shdl1l2cst,l1,hdcst,l2,hd + v09shdl1l2cst,l1,hd

]cst,l2,hd
]h

− v09shdl2
2cst,l2,hd

]cst,l1,hd
]h

DG , s9d

where the terms of the order ofc3 are omitted and

Dst,l,hd =
]2

]h2 − 2iltv08shd
]

]h
− ilv09shdt − l2fv08shdg2t2 − l2.

s10d

Equations9d includes the effects of both flow shear inhomo-
geneity and nonlinearity. To understand the role both of these
effects play in the complete solution, it is instructive to con-
sider these effects separately.

It follows from Eqs.s6d ands7d for Eqs.s9d ands10dg that
flow shear is the source of the nonmodal time dependence of
the stream function. Nonmodal effects are negligible in the
case of weak flow shear, i.e.,uv08shduT!1. ForT=g−1, where
g<uNsz0du is the local growth rate of the ordinary instability

of the inversely stratified fluidf9,19g initial perturbations de-
velop as are typically obtained in modal approach solutions.
The development of the modal instability is followed by the
development of nonlinear effects, which ultimately may lead
to instability saturation. Such “modal” turbulence may affect
the mean flow by changing its structure through processes
such as the formation Kelvin cat-eyes vortices in the critical
layer regionsf9g and/or development of turbulent viscosity.
It is only during the long time evolution of such nonlinear
processes that nonmodal effects might be important in the
case of weak flow shear.

Is follows from Eq.s10d that nonmodal effects vanish for
valuesh0 such thatv08sh0d=0. Nearby these zero shear re-
gions, nonmodal effects are weak and therefore perturbations
will develop as governed by the modal equations and the
effects of shear flow are minimal. Note that all nonmodal
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terms in Eq.s9d are multiplied by the wave-number compo-
nent l along the shear flow. Therefore, nonmodal effects also
vanish for disturbances withl =0. Small values ofl reduce
the effect of the flow shear and thus nonmodal effects are
again minimized. It follows from Eqs.s9d ands10d that non-
modal effects dominate whenuv08shdTuù1 and the wave
number l is not small. Comparison of the modal and non-
modal terms in Eqs.s9d ands10d leads to a general condition
for dominance of nonmodal effects,

uv08shduT . maxS1;
uv09shdu
ulv08shdu

,
1

lh
D , s11d

whereh is the scale length of the perturbation along the flow
shear. ForT=g−1, Eq. s11d becomes

uv08shdu . maxSg;g
uv09shdu
ulv08shdu

,g
1

lh
D . s12d

When Eq.s12d is satisfied, the initial perturbation develops
according to the nonmodal constraints prior to the develop-
ment of the modal instability. Therefore, Eq.s12d is akin to a
bifurcation condition that separates two distinctively differ-
ent types of solutions to Eq.s9d.

The temporal evolution of perturbations in the case of
strong, monotonic, inhomogeneous flow shear for which Eq.
s12d is satisfied is the focus of the rest of the analytic analysis

presented in this work. The temporal evolution of perturba-
tions in the case of monotonic, inhomogeneous flow shear
was considered numerically by Benilovet al. f19g. They
showed that inhomogeneous flow shear stabilizes only short
scale disturbances and leaves unstable large scale distur-
bances, i.e., those with small wave numberl. In the next
sections, we obtain linear and weak nonlinear solutions to
Eq. s9d for inhomogeneous flow shear under the constraint
given by Eq.s12d for the dominance of nonmodal effects. We
show that under these conditions, the solutions for stream
function are stable. Therefore, Eq.s12d defines a boundary
for the regions of stable and unstable wave numberl.

III. LINEAR EVOLUTION STAGE OF PERTURBATIONS
IN INHOMOGENEOUSLY SHEARED FLOW

Here we consider the effect of inhomogeneous shear on
the linear temporal evolution of perturbations in a system
with stratified flow. In the case of strong flow shear, it is
convenient to introduce a new variable,zst ,h , ld, defined by

zst,h,ld = fv08shdTtg2cst,h,ld. s13d

For zero order in the nonlinearity parameter,«T fi.e., we
omit the right nonlinear part of Eq.s9dg, we obtain the fol-
lowing equation forz:
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1
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1
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1
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1
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]4z
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+
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fv08shdTg2

1

t2

]2z

]t2 +
4

sv08Td2

1

t3

]3z

]h2]t
−

6

sv08Td2

1

t4

]2z

]h2 = 0. s14d

The presence of the small parameterfv08shdTg−1!1 in Eq.
s14d permits us to obtain a solution in terms of a power series
in the parameterfv08shdTg−1,

zst,l,hd = z0st,l,hd +
1

fv08shdTg
z1st,l,hd

+
1

fv08shdTg2z2st,l,hd + ¯ . s15d

By employing this new power series approach, we can obtain
homogeneous asymptotic solutions for timestù fv08shdTg−1

in systems with inhomogeneously sheared flows for which
the conditionfv08shdTg−1!1 is fulfilled for all considered
values ofh. For z0, we have the equation

]2z0st,l,hd
]t2 + Jshd

1

t2z0st,l,hd = 0, s16d

obtained earlier by Hartmanf13g for the case of the homo-
geneous flow shear. The solution to Eq.s16d is easily ob-
tained and is equal to

z0st,l,hd = C1sl,hdtk1 + C2sl,hdtk2, s17d

for the caseJshdÞ1/4, where

k1,2=
1

2
±Î1

4
− Jshd. s18d

For Jshd=1/4, thesolution is

z0st,l,hd = t1/2fC1sl,hd + C2sl,hdln tg. s19d
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It follows from the solutions17d that the stream function
c decays with increasing time, when the condition

uv08shdu ù 2−1/2g s20d

is fulfilled for all h consideredsas it is in the case of the
homogeneous shear flowd.

The perturbation of the fluid density in the convective
coordinates is given by

r = − ilr0
N2

gt
SC1

k2
tk1 +

C2

k1
tk2D .

Thus, the perturbation of fluid density grows slowly in time
astk ssee also Ref.f17gd, where

k = −
1

2
+ F1

4
+ S g

v08shdD
2G1/2

.

Such a dramatic difference between the time dependencies of
the stream function and the density perturbations in a linear
system is strictly a nonmodal effect arising from the velocity
shear.

It is interesting to note that in convective coordinatess5d,
spatial derivatives inh are absent in the equation forz0 and
the spatial variableh only enters into Eq.s16d and into its
solutionss17d ands19d as a parameter. The specific spatialh
dependence of the solutionss17d and s19d is determined en-
tirely by theh dependence of the flow velocityv0shd and by
the initial conditions through which the functionsC1,2sl ,hd
are determined. It is important to note that the condition

uv08shduT.maxfslhd−1g in Eq. s11d violates near the boundary,
where the spatial scaleh of the perturbations along the flow
shear tends to zero. Therefore, Eqs.s17d ands19d are actually
asymptotic solutions, which are valid for timest
ù fv08shdTg−1 and for locations far from the boundaries,
where the conditions given by Eq.s11d or Eq.s12d are valid.
For the solution of specific initial and boundary problems,
the obtained solutions here would have to be matched with
the solutions for cst , l ,hd, obtained for the timest
! fv08shdTg−1 and near the boundaries. However, the solution
of the complete problem, which includes the initial and
boundary problem, is beyond the scope of this work. Here,
only the effect of the inhomogeneously sheared flow on the
stability of the stratified fluid, i.e., the unbounded case, is
considered.

Turning to the next term in the series according to Eq.
s15d, the equation forz1st , l ,hd is given by

]2z1st,l,hd
]t2 + Jshd

1
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= 3i
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1

t
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]t]h
−

4i

lt3

]z0

]h
. s21d

In that equation, the derivatives ofz1 over h are also absent
and Eq.s21d is also the ordinary differential equation. The
solution to Eq.s21d is readily obtained and is equal to

z1st,l,hd = C1sl,hd
tk1−1

lsk1 − k2dF−
iv09shd

fv08shdg2s3k1
2 − 10k1 + 8d +

2i

v08shd
]k1

]h
f2k1 − 3 + sk1

2 − 3k1 + 2dsln t + 1dg

+
i

v08shd
]k1

]h

sk1
2 − 3k1 + 2d

k2
Sln t +

1

2k2
D +

1

2k2
S iv09shd

fv08shdg2s3k1
2 − 10k1 + 8d −

2i

v08shd
]k1

]h
s2k1 − 3dDG

−
isk1

2 − 3k1 + 2d
v08shdlk2

]C1

]h
tk1−1 + s1 ↔ 2d s22d

for JshdÞ1/4 and

z1st,l,hd =
1

t1/2

ilv09shd
fv08shdg2

15

4
FC1shd + C2shdS 2

15
+ ln tDG +

1

t1/2

il

v08

5

2
F ]C1

]h
+

]C2

]h
S18

5
+ ln tDG s23d

for Jshd=1/4. In Eq.s22d, the notations1↔2d indicates the
additional terms similar to those presented explicitly, but
with relabeled suffixes inCi

s jd andki according to 1→2 and
2→1. Equationss17d, s18d, s22d, and s23d demonstrate that
solution z1std=Oft−1z0stdln tg, i.e., solutionz1std algebra-
ically decreases with time more rapidly under the condition
given by Eq.s20d than the solutionz0std. Therefore, the so-
lution for the stream functionc=fv08shdTtg−2fz0std+z1stdg is
stable in the case of strong monotonic, inhomogeneous, flow
shear for which Eq.s12d is satisfied. Perhaps most important

is that the stabilization of the Rayleigh-Taylor instability by
sheared flow persists even for inhomogeneous flow shear.
The complete solution has the same structure of the stream
function as obtainedsin laboratory coordinatesd in Eq. s1.6d
of Ref. f11g. However, our solution, as given by Eqs.s22d
ands23d, provides all the coefficients explicitly and the itera-
tive procedure may be easily continued to the desired order
of the parameterfv08shdTg−1.
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IV. WEAK NONLINEAR EVOLUTION OF
PERTURBATIONS OF THE FLOW WITH

INHOMOGENEOUS SHEAR

Nonlinear studies of the Rayleigh-Taylor instability have
been carried out in recent years by Hassamf16g,
Mikhailenko et al. f17g, and others. Hassam performed a
one-dimensional calculation and showed that the Rayleigh-
Taylor instability in a magnetized plasma may nonlinearly
saturate because of flow shear. The nonmodal approach, ap-
plied to the study of the weak nonlinear evolution of the
two-dimensional Rayleigh-Taylor instability in plasmas with
homogeneous flow shear by Mikhailenkoet al. f17g, demon-
strated that homogeneous flow shear stabilizes not only lin-

early unstable two-dimensional perturbations of electrostatic
potential, but also the nonlinearly unstable perturbations.
Now we consider the effect of weak nonlinear nonmodality
on the evolution of perturbation for inhomogeneous, mono-
tonic, shear flow. Here we derive a solution to Eq.s9d in the
form of the power series in the nonlinearity parameter«T,

zst,l,hd = z0st,l,hd + s«Tdzs1dst,l,hd + s«Td2zs2dst,l,hd

+ ¯ . s24d

In Eq. s24d, the solutionz0st , l ,hd is determined by Eq.s17d
for JshdÞ1/4 and by Eq.s19d for Jshd=1/4. Theequation
for zs1dst , l ,hd, in which terms of zero order in the parameter
sv08Td−1 are included, is

]2zs1dst,l,hd

]t2 + Jshd
1

t2zs1dst,l,hd =E dl1E dl2dsl − l1 − l2d2
il 2

2

l2

3H ]

]t
F−

]c0st,l1,hd
]h

l2fv08shdtg2c0st,l2,hd + l1c0st,l1,hd
]

]h
hfv08shdtg2c0st,l2,hdjGJ , s25d

whereCi
s jd=Cisl j ,hd si , j =1,2d. The solution to Eq.s25d is given by

zs1dst,l,hd =
1

sk1 − k2dfv08shdg2 E dl1E dl2dsl − l1 − l2d
l2
2

l2
HF−

8il 2v09shd
v08shd

+ 2i
sl2 − l1d

k2

]k1

]h
− 4isl2 − l1d

]k1

]h
Sln t +

1

k2
DG

3C1
s1dC1

s2dtk1−k2 + F4il 2

k1

v09shd
v08shd

sC1
s1dC2

s2d + C2
s1dC1

s2dd −
2il 2

k1
SC1

s2dC2
s1d]k2

]h
+ C1

s1dC2
s2d]k1

]h
DSln t +

k2

k1
D

+
2il 1

k1
SC1

s1dC2
s2d]k2

]h
+ C1

s2dC2
s1d]k1

]h
DSln t +

k2

k1
DG + F 8ik1l2

s2k1 − k2d
v09shd
v08shd

+
2isl1 − l2d
s3k2 − 2d

]k2

]h
−

s4il 2k2 − 4il 2 + 4il 1k1d
s3k2 − 2d

3Sln t −
1

3k2 − 2
DGC2

s1dC2
s2dtk2−k1J −

2i

sk1 − k2dfv08shdg2 E dl1E dl2dsl − l1 − l2d
l2
3

l2
F2C1

s2d]C1
s1d

]h
tk1−k2

+ SC2
s2d]C1

s1d

]h
+ C1

s2d]C2
s1d

]h
D 1

k1
− 2C2

s2d]C2
s1d

]h

1

3k2 − 2
tk2−k1G +

2i

sk1 − k2dsv08shdd2 E dl1E dl2dsl − l1 − l2d
l1l2

2

l2

3F2C1
s1d]C1

s2d

]h
tk1−k2 + SC1

s1d]C2
s1d

]h
+ C2

s1d]C1
s2d

]h
D 1

k1
− 2C2

s1d]C2
s2d

]h

1

s3k2 − 2d
tk2−k1G + s1 ↔ 2d s26d

for JshdÞ1/4. In Eq.s26d, the notations1↔2d indicates additional terms similar to the terms presented explicitly, but with
relabeled suffixes,i =1,2 in Ci

s jd andki according toi =1 is changed toi =2, andi =2 is changed toi =1. For the values ofh
for which Jshd=1/4, zs1dst , l ,hd is given by

zs1dst,l,hd =
4i

l2fv08shdg2 E dl1E dl2dsl − l1 − l2dl2
2Hl2FS3

]C2
s1d

]h
C1

s2d + 16
]C2

s1d

]h
C2

s2d +
]C1

s1d

]h
sC1

s2d + 3C2
s2ddD

+ ln tS ]C2
s1d

]h
C1

s2d +
]C1

s1d

]h
C2

s2d + 6
]C2

s1d

]h
C2

s2dD + ln2 t
]C2

s1d

]h
C2

s2dG + l1FS3
]C2

s2d

]h
C1

s1d + 16
]C2

s2d

]h
C2

s1d

+
]C1

s2d

]h
sC1

s1d + 3C2
s1ddD + ln tS ]C2

s2d

]h
C1

s1d +
]C1

s2d

]h
C2

s1d + 6
]C2

s2d

]h
C2

s1dD + ln2 t
]C2

s2d

]h
C2

s1dG
−

v09shd
v08shd

l2hf3C2
s1dC1

s2d + 16C2
s1dC2

s2d + C1
s1dsC1

s2d + 3C2
s2ddg + ln tsC2

s1dC1
s2d + C1

s1dC2
s2d + 6C2

s1dC2
s2dd + ln2 tC2

s1dC2
s2djJ .

s27d
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Both expressions forz1std confirm that weak, nonmodal
nonlinearity does not eliminate the stabilization of the
Rayleigh-Taylor instability by inhomogeneous, monotonic
shear flow that satisfies the constraint described by Eq.s12d.
The solutions for the nonlinear nonmodal perturbation of the
stream functioncs1dst , l ,hd=fv08shdTtg−2zs1dstd with either
JshdÞ1/4 or Jshd=1/4 will decrease with time provided
that

uv08shdu ù
2
Î3

g. s28d

Otherwise the perturbations will grow algebraically. The
constraint described by Eq.s28d is more restrictive than the
constraint given by Eq.s20d for the linear stabilization of the
stream function because in the ranges1/Î2dg, uv08shdu
, s2/Î3dg, nonlinearly excited perturbations of the stream
function c1 will grow algebraically.

It is interesting to note that the conditions28d was ob-
tained earlier in Ref.f17g for the case of homogeneous flow
shear, even though the nonlinearsright sided of the equation
for zs1d was different in the cases of homogeneous and inho-
mogeneous flow shear. The only differences in time depen-
dencies in the case of inhomogeneous shear are the appear-
ance of lnt and sln td2 multipliers in Eqs.s26d and s27d,
because of theh dependencies ofk1,2. However, these mul-
tiplicative factors do not affect the decaying nature of the
solutions forcs1d=fv08shdTtg−2zs1dstd under the constraint of
Eq. s28d.

V. CONCLUSIONS

In this work, we have developed an analytical framework
that is a natural extension of the nonmodal approach for ho-
mogeneous sheared flows to the case of inhomogeneous
shear. The linear and weak nonlinear evolution of perturba-
tions in systems with monotonic, inhomogeneous shear was
determined and it was demonstrated that stabilization of the
Rayleigh-Taylor instability by shear flow can persist in the
case of inhomogeneously sheared flow. The temporal evolu-
tion of the initial perturbations depends on the relative mag-

nitudes of the shear parameter,v08shdT, and the nonlinearity
parameter,«T. In the specific case of monotonic shear,
sheared flow disturbances that satisfy Eq.s12d for all values
of h are stable to the development of Rayleigh-Taylor insta-
bility. The stabilization arises from nonmodal effects due to
the flow shear.

Stabilization of the Rayleigh-Taylor instability in plasmas
and in ordinary, homogeneously sheared, flows was reexam-
ined in a recent paper by Benilovet al. f19g. They concluded
that stabilization of the Rayleigh-Taylor instability by homo-
geneous shear flow is a “quirk” of the model chosen and any
deviation from a linear velocity profile triggers instability,
i.e., inhomogeneous shear is not stabilizing. Their conclusion
was based on a study of the stability of small wave number,
l, perturbations in systems with monotonic shear flow and a
study of the stability of jet flow in the vicinity of a tip where
v08sh0d=0, i.e., the cases were considered in which shear flow
effects are too smallsas in the case of smallld or even absent
sas at the tip of the jet flowd. However, it is important to note
that the stabilization of the Rayleigh-Taylor instability even
by homogeneous shear flow is not a universal effect for all
values of the flow shearv08 and wave numberl. Stabilization
by homogeneous flow shear requires fulfillment of the con-
dition uv08szduù2−1/2g for linearly unstable perturbations and
fulfillment of slightly more stringent conditions for nonlin-
early unstable perturbationsf17g. In fact, homogeneous shear
flow provides no stabilizing effect for perturbations withl
=0 f17g. The stabilization condition found in this work, Eq.
s12d, is a similar constraint for inhomogeneously sheared
flow. Our analysis is consistent with the numerical results
described in Ref.f19g in that for cases where the effect of
flow shear, as expressed through the nonmodal terms in Eq.
s6d or Eq. s9d, is minimal or absentsas it is in the two cases
examined in Ref. f19gd, the Rayleigh-Taylor instability
grows. However, if the perturbation characteristics and flow
shear satisfy Eq.s12d, all perturbations of the stream function
are stable.
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